
Large scale physics simulations
must be designed to execute
effectively in a distributed memory,
parallel processing environment.
UPS, an acronym for “Unified
Parallel Software”, is a library of
routines designed to help the
application developer create
efficient, portable, extensible, and
robust large scale parallel programs
for such applications. Some parallel
programming models attempt to hide
the parallelism from the application
writer. Others require that the
application writer work at the lowest
levels. UPS falls in between: it is
designed to expose the parallel
environment to the computation
while abstracting away the necessary
complexities. The result is a
simplified coding style, natural to
the application, which minimizes the
time spent moving data among the
distributed processes.

UPS is designed to run in any
computing environment that
supports the C programming
language and which provides a
method for moving data between
parallel processes, such as MPI.
However, the higher level interface
between the application and the
computing environment allows for
performance optimizations based on

available hardware and software
characteristics and components.

More on UPS

UPS is composed of packages or
components, each of which is
designed to address
a category of tasks common to
writing parallel applications. For
example, the communication
component includes reductions and
broadcasts. The “meat” of UPS is
on the movement of data between
distributed processes. Special
functionality is included
which can help keep track of
complex communication
requirements, such as is needed by,
for example, physics applications
which operate on unstructured
meshes.

Our users asked us to provide a
light-weight infrastructure, one that
required no changes to the data
structures they had already
developed and invested in. Our users
also rely heavily on the close
coupling of the UPS team to their
projects so that we may quickly
respond to their particular needs. In
this regard, UPS can be viewed as a
“blue-collar” alternative to existing
parallel infrastructures.

This figure shows the result of a RAGE
simulation of a single-mode single-
interface (SF6-air) Richtmyer-Meshkov
Instability (Mach 1.2 shock) that has
been shocked at time = 0 and then later
re-shocked (time ~ 0.9 msec) by the
reflected shock.

Gather/scatter

Gather/scatter functions let the
application submit a request for data
to be collected into a specified
address in memory. UPS collects the
data from memory addresses that are
both local to the process and located
in the memory owned by other

processes. This abstracts a
significant amount of work away
from the application writer, and
allows the developers of UPS to
optimize the movement of data.

UPS: Unified Parallel Software

The following is an example of how
users might apply the gather/scatter
component.

The figure illustrates a domain
decomposition and cell connectivity
scheme common to applications that
could benefit from using the UPS

gather/scatter component. The
domain consists of nine cells with
sixteen associated vertices, or nodes.
The nodes are decomposed into
three partitions as follows:

 Partition P1 owns nodes n1-n8
and cell centers c1-c3. Partition P2
owns nodes n9-n12 and cell centers
c4-c6. Partition P3 owns nodes n13-
n16 and cell centers c7-c9

So, if process P2 wishes to get the
values for all the cell centers (both
on and off process) it can make a
single gather call. Later on, the
process can reverse the process and
scatter information back to the cell
centers with a single call to scatter.

Collaborative Effort

UPS relies heavily on incremental
contributions from a wide variety of
sources. Success can only be assured
through the cooperative efforts of
the UPS core team and all of its
contributors. As such, UPS is
designed to provide an efficient
means for getting the work of
software developers, researchers,

and other interested parties
incorporated into user
applications. Further, UPS provides
an excellent opportunity for helping
hardware, firmware, and software
providers understand how a
significant portion of ASCI
applications make use of a
computing environment.

Our current list of collaborators
come from divisions throughout the
laboratory (CIC, MST, X),
universities (Tennessee, Minnesota),
partner laboratories (Lawrence
Livermore, Oak Ridge, Sandia-
Albuquerque, and Sandia-
California), and third party vendors
(Abba Technologies, CPCA, Intel,
and SAIC). In preparation for
execution on other compute
platforms, we have interacted with
employees from Sun Microsystems,
Compac, HP, and IBM. Interaction
with our collaborators has resulted in
significant

performance improvements on ASCI
Blue Mountain. Our goal is to
continue making such improvement
on this and other platforms.

For further information, contact
Richard Barrett at rbarrett@lanl.gov
or Mike McKay, Jr. at
lmdm@lanl.gov. The UPS web page
is found at

n1 n2 n3 n4

n7n6n5 n8

n10 n11 n12

n13 n14 n15 n16

c1 c3

c4 c5 c6

c8 c9c7

c2

p1

p2

p3

n9

www-xdiv.lanl.gov/XCI/PROJECTS/UPS

